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This  presentation  will  begin  with  adescription  of  the  previous  published  work 
contributing to the results reported here. The previously  developed  one 
dimensional  continuum  model  will be generalized  to  two  dimensions and a 
Green’s  function  for  the  resulting  differential  equation  will be obtained as an 
eigenfunction  expansion. This will be used to obtain  dynamic  solutions 
relevant  to the steering of the radiated beam. Finally,  some  remarks 
concerning  limitations on the interoscillator phase difference  will be provided. 

2 



... , , . 
c 

Introduction 

Concept due to Liao and York [IEEE Trans. 
MTT-41, pp.  18 10- 18 15,October 19931. 
- Linear  array of VCOs. 
- Antisymmetric  detuning  of  end  osciuators. 
- Linear apertu~ phase with variable  gradient 
- Analysis  via  numerical  solution of a system of first 

order nonlinear  differential  equations based on  Adler's 
theory of injection  locking. 
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The fundamental  concept of steering phased a m y  beams by appropriately 
tuning the end oscillators of a linear  array  originated  with  Liao and York in 
1993. They  suggested  that  linear  phase  progressions  along  the  array  could be 
established if the  end  oscillators  were  antisymmetrically  detuned  from  the 
ensemble  frequency.  They  also  verified  this  experimentally  at X-band in an 
array in which  the  coupling  was  achieved  through  the  electromagnetic 
coupling between the  radiating  elements.  Since this was a function  of  the 
element  spacing,  the  design was over  constrained. 

This analysis of the array took the  form  of  numerical  solution  of a system  of 
frrst  order  nonlinear  differential  equations  derived  using  Adler's  theory of 
injection  locking.  This  made  intuitive  understanding of  the  dynamics  difficult. 
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Introduction  (Continued) 

1 Continuum model by Pogonelski and York 
[IEEE AP-S  Symposium Digest, pp. 324- 
327, July 19971. 
- Continuous phase function of continuous  variable 

- Governed by second  order partial differential  equation. 
- Steady state is analogous to electrostatics. 

indexing oscillators. 

Detrrning=a3arge 
Phase= Potential 
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Beginning  around 1996, Pogorzelski  and  York  developed  acontinuum  model 
of  coupled oscillator  arrays in  which  the  phase is described  by a  continuous 
function  of a  continuous  variable  which,  when it takes on  integer valueS, 
indexes the  oscillators  of  the may. The  behavior  of this continuous  function  is 
governed by a  second  order  linear  partial  differential  equation which can be 
solved  analytically  using  standard techniques. This greatly  enhances  insight 
into the  dynamics  of  such  arrays and the  relationship  between  the  behavior of 
the  phase and tuning of the  oscillators. 

In applying  this to the  beamsteering  problem, it was noted  that an analogy  with 
electrostatics is evident in which  the  phase  plays  the  role  of  electrostatic 
potential and the tuning plays  the  role  of  electric  charge  density.  Here  again 
intuitive understanding is enhanced. 

a 
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The M by N Array 
N+l 

N 
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This diagram schematically represents a (2M+1) by (2N+1) array of oscillators 
coupled to nearest neighbors. This is the  array to be analyzed in the following. 
The oscillators  shown in dashed lines are fititious and their  purpose will be 
described  later in this presentation. 



The Continuum Model 

Begin with Adler’s theory applied to the 
array. 

Define the phase by: 

e# = ur4t + $d 
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To derive  the  continuum  model of  this  two  dimensional  array,  we  begin  with 
Adler’s  description of the  injection  locking  phenomenon.  In  his  theory,  the 
time  derivative of the  phase  of an injection  locked  oscillator is related to the 
sine of  the  phase  difference  between  the  oscillator  signal and the  injection 
signal.  Generalizing  this  to  the two dimensional may of  mutually  injection 
locked  oscillators (with general  interoscillator  coupling  topology)  we  arrive  at 
the  system of differential  equations  shown. We  then  define  the  phase,  phi, as 
shown  relative  to a reference  frequency  which  can be chosen  arbitrarily. 
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The Continuum Model (Cont.) 

Using this definition of phi  the  system of equations  become  that  shown  here. 
Then,  assuming  that the locking ranges are all the same,  that  the  coupling 
phase  is  zero, and that  the  phase  differences  between  adjacent  oscillators is 
small, we  can linearize  the  system as shown.  Then,  the  quantity  in  the  square 
brackets  can be identified as the  finite  difference  approximation  to  the 
Laplacian operator. 
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The Continuum Model (Cont.) 

I which leads to, 

Thus,  defining a continuous phi function  and  continuous  variables x and y 
indexing  the  oscillators, we arrive at the partial differential  equation  for phi 
shown. This is the diffusion  equation. Tau is  time  measured in inverse 
locking ranges. 

8 



Boundary  Conditions 

Employ an artifice  proposed  in  the  one 

Add fictitious  oscillators  on the periphery. 
- Dynamically tuned to reduce injection to zero. 
- Results in a Neumann condition  on the 

dimensional  case. 

boundary. 
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Having  derived the differential  equation  governing  the  behavior  of  phi,  we 
must determine  the  boundary  conditions at the  perimeter  of  the  array  in  order 
to  uniquely  define  the  solution. For this we use an artifice in which  fictitious 
oscillators are added on  the  periphery  of  the  array and these are dynamically 
tuned  in  such a manner as to  render  the  phase of each  fictitious  oscillator  equal 
to its nearest real  neighbor  in  the  array. This effectively  emulates  the  absence 
of the  fictitious  oscillator  because  when  the  phases  are  equal  the  injection 
effect on the  dynamics is zero by Adler’s  theory.  Now,  the  equality  of  the two 
phases  implies a zero value  for  the  derivative of phase  normal  to  the array 
edge;  i.e., a Neumann boundary condition. 
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The M by N Array 

This diagram illustrates the fictitious oscillator arrangement used in the 
boundary condition  derivation. 
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The Ensemble Frequency 

Averaging  over the array, 

The partial differential  equation  can  now be used to determine  the  frequency  at 
which the ensemble  of mutually injection  locked  oscillators  will  oscillate 
without  external  injection. This is done by averaging the equation  over  the 
area of the array. The result indicates  that the ensemble  frequency will’be 
equal  to  the  average of the tuning (free running) frequencies. 

1 1  



The  equation  will be solved by means  of a Green’s  function,  g;  that is, a 
solution  for  the  case  of a delta  function  source tern as shown.  Performing a 
Laplace  transformation with respect to  the time variable  results in the  spatial 
equation  shown. 
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The Eigenfunctions 

I 13 

The Green’s function  can be expressed as a sum  of  eigenfunctions  of  the 
differential  operator in the  spatial  equation.  The  eigenfunctions  come in four 
types according  to  their  even  or odd symmetry with respect to  the  spatial 
variables. 

a 
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The Eigenvalues 
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Applying Neumann  boundary conditions determines the eigenvalues. 
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Normalization 
1 

Nec.mn - - -J(h 2 + 1)(26 + l)&,E, 

2; m=O 
1; m+O E, = 

IS 

It will be convenient  to  normalize  the  eigenfunctions so that the  integral of 
their  absolute  square  over the area of the array is unity. The  necessary 
normalization  constants  are  shown  here. 
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Normalized  Eigenfunctions 

1 
fa-m = 

I- = 
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Using the preceding  results,  we  obtain  the above set of  normalized 
eigenfunctions  required  for  the  expansion  of the Green's  function. 
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Back to  the  Green’s  Function 
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Using  Sturm-Liouville  theory  we can immediately  write  the  Green’s  function 
in terms of the eigenfunctions. Each term of  the  expansion has one  simple 
pole  at the eigenvalue  rendering  the  inverse  Laplace  transform a trivial  matter 
of summing the  residues  at  these  poles.  There is, however, a double  pole  at  the 
origin which yields a term linear in time. 
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The Solution for Phase 
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This is the  inverse  Laplace  transform  giving  the  dynamic  behavior  of  the phase 
function when one oscillator is step detuned by one locking  range  at time zero. 
A remaining issue  is  that,  because the source  is a delta  function  instead  of a 
pulse over  on unit cell of  the  array,  this series diverges  at  the  detuned 
oscillator. 
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Pulse  Source  Representation 

- [ a  [El 
+ three more double sums. 

The  divergence  arising  from  the use of  the Dirac delta  representation  can be 
circumvented  by  using a pulse source. The  corresponding  solution  can be 
obtained by integrating the  previous  solution  over  one  unit cell. The result is 
shown  here and is tantamount  to  multiplication by appropriate  sinc  functions. 
This  series  converges  everywhere in the array. 
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This is a graphical  representation of  the  solution  shown in the  previous  chart 
excluding  the term linear  in  time. Four times are  shown,  the fsst near  zero  of 
time, the  second part way into  the  transient,  the  third  near  convergence, and the 
fourth at infinite time. The  excluded  linear  time  term arises because  the 
ensemble  frequency changes in concert  with  the  change in the  average  of  the 
tuning frequencies of the  oscillators  resulting  from  the  detuning of one  of 
them 
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The Array Time Constants 

1 (2a + 1)’(2b + 1)’ 
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The  solution permits recognition  of  the  slowest  time  constant  which is 
representative of the  response time (bandwidth) of the whole array. Four cases 
are  possible  resulting in slightly  different  results.  However, in general these 
time constants are roughly  proportiond to the number of  elements in the array. 
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Beamsteering requires  planar phase distributions over the array area This can 
be obtained by detuning the perimeter elements according to the  prescription 
shown bere. Note that only four voltages are required since all of the 
oscillators along a given array edge are detuning  by  equal  amounts. 
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The Dynamic Solution 
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The solution resulting from the  beamsteering detuning prescription can be 
obtain  by  integrating the source function multiplied by the Green’s function 
obtained previously. The result is shown here. 
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The  Steady  State  Solution 
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The  steady state solution  can be derived  from  the  dynamic  solution by noting 
that,  at  infinite time, the  summations  can be performed in  closed form 
resulting in  quadratic  functions. The form above  clearly shows that  the 
symmetric part of the detuning  gives  quadratic  phase  dependence while the 
antisymmetric  part  yields  the  linear  dependence  desired for beamsteering. 
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Parameters  for  Beamsteering 
c, =-c2 =-c 
d,  =-d, =-d 

which yields, 
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By selecting the parameters for antisymmetric  detuning as shown,  we obtain 
the desired linear phase. 
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These  graphs  show  the time evolution of the  phase  when  detuning  appropriate 
to  beamsteering is applied. 
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Radiating Aperture 

h 
h 

ax = 2n --sine, cos@, 

h 
h 

a,, = 2n: -sine,  sin$, 

n 

If we  consider  a  radiating  aperture  composed of elements spaced by distance h 
in a  two  dimensional square lattice,  the tuning necessary to steer the beam to 
desired polar angles is given by the above formulae. 

e 
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This graph  shows  the beam peak (dots) and the three dB contour  (closed 
curves) as a function of time  during the beamsteering  transient  resulting when 
a step  steering  voltage designed to steer the beam thirty degrees off  normal is 
applied at time zero. 
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During the transient  period,  the  aperture phase is nonplanar. This results in a 
temporary reduction in  gain  due to phase aberration. This graph shows this 
gain reduction as a function of time compared with the  projected  aperture loss 
to be expected  for  each beam position.  These curyes were obtained by  pattern 
integration. 
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This graph  shows  the result of  four sets of  steering  voltages  applied  in  rapid 
succession.  Note  that  the  aberration  effects  seem  to be greater  when  steering 
from  one  off axis position  to  another than when  steering  to or from  normal. 
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Concluding Remarks 

I Inter-oscillator  phase  difference 

- Limit can be mitigated by: 
- Limited to 90 degrees. 

Reducing the element  spacing. 
Adding  oscillators between the radiating ones. 
Radiating  at  a  harmonic  of  the  coupling  frequency. 

This techniques  appears to hold  promise  for 
simplification  of  the  beamsteering  control 
system. 
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One  limitation  of the present  system is that the phase  difference  between 
adjacent osciuators is  limited to 90 degrees  to  maintain lock. (The validity of 
the linearized  theory  actually requires  that the phase  difference be small 
compared  to 90 degrees.)  This  would  appear  to  limit the scan  of a  radiating 
aperture with half  wavelength  element  spacing  to 30 degrees  off axis. 
However, this can  be  mitigated in several  ways.  One  can  reduce the spacing 
between the  elements,  one  can  radiate  only  from  every  second or every  third 
oscillator, or one  can  radiate  at  a  harmonic  of  the  coupling  frequency. 

Overall,  this  appear to be an interesting  technique  for  beamsteering  which 
results in considerable  simplification of the  steering  electronics  in  that it only 
requires  four  analog  voltages  to  achieve  steering in two  dimensions. 
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